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THE DEVELOPMENT OF 
LAMINAR NATURAL-CONVECTIVE FLOW IN A 

VERTICAL UNIFORM HEAT FLUX DUCT 
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(Receioed 1 January 1975 nnd in revisedform 14 March 1975) 

Abstract-An account of a theoretical and experimental study of laminar natural-convective flow in 
heated vertical ducts is presented. The ducts are open-ended and circular in cross-section and their 
internal surfaces dissipate heat uniformly. 

Temperature and velocity fields and the relationship between Nusselt and Rayleigh numbers were 
obtained by solving the governing equations by a step-by-step numerical technique. Two Rayleigh numbers 
are introduced, one expressed in terms of the uniform heat flux and the other in terms of the mean wall 
temperature. The influence that the Prandtl number has on the relationship between the Nusselt and 
Rayleigh numbers is discussed. Three inlet conditions were examined; they all gave the same Nusselt 
relationship at small Rayleigh numbers and the differences between the Nusselt relationships obtained 
at large Rayleigh numbers were only small. 

Experimentally determined Nusselt numbers, with air as the convected fluid, agreed satisfactorily with 
the theoretical relationship. 
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NOMENCLATURE 

specific heat at constant pressure; 
constant; 
diameter of duct; 
uniform surface heat flux; 
dimensionless uniform heat flux, l/Pr; 
acceleration of gravity; 
Grashof number, g/Ifrz/v21k; 
Grashof number, g/3f14/v2k; 
Gr/Nu; 
heat dissipation (from inlet to elevation x); 
dimensionless heat dissipation, h,/Ruf Ir, 
(from inlet to elevation X); 
thermal conductivity; 
length of duct ; 
dimensionless length, l/Gr; 
Nusselt number, fr,J( T, - T,)k or l/O,,,,, ; 
pressure; 
dimensionless pressure, pr$/pJZv2Gr2; 
volume flow; 
dimensionless flow, q/lvGr; 
radial co-ordinate; 
dimensionless radial co-ordinate, r/r,,,; 
Rayleigh number, GrPr; 
Ra/Nu; 
temperature; 
velocity in x-direction; 
dimensionless velocity in x-direction, 
uri/lvGr; 
velocity in r-direction; 
dimensionless velocity in R-direction, vr,/v; 
vertical co-ordinate; 
dimensionless vertical co-ordinate, x/lGr. 

*Senior Lecturer, Department of Mechanical Engineering. 

Greek symbols 

B, coefficient of thermal buoyancy; 

8, dimensionless temperature, (T- T,)k/fr,; 

H dynamic viscosity; 

v, kinematic viscosity; 

P9 density. 

Subscripts 

2 
axis of duct; 
defect (pressure), diameter; 

t 
condition at inlet ; 
length of duct; 

m, mean value; 

me, mid-elevation; 

0, ambient condition; 

r, radius of duct; 

4 top of duct ; 

W, wall of duct; 

wm, wall, mean value; 

W wall, top; 

wx, wall, location; 

x, elevation x or X. 

INTRODUCTION 

THERE is often the need to cool the internal surfaces 
of vertical open-ended ducts and of banks of tubes by 
natural convectioqdespite the low rates of heat transfer 
that this convective process affords. Thus information 
on the behaviour of natural-convective flow through 
confined spaces has wide use, which in recent years has 
included research and development in the diverse fields 
of nuclear and solar energy. 

The investigation reported in the present paper deals 
with vertical circular ducts whose internal surfaces 
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i r, 

FIG. 1. Diagrammatic view of a vertical circular 
duct with a uniform surface heat flux. 

dissipate heat uniformly. Such a duct is shown 
diagrammatically in Fig. 1. It will be seen that the 

natural-convective flow induced by the uniform surface 
heat flux produces temperatures on the wall that 

increase along the duct. Unlike the temperature dis- 
tribution that occurs along a vertical flat surface with 
a uniform heat flux [l], the distribution of the tem- 
perature along the wall of the duct is not fixed but 
varies with the geometry of the duct and the heat flux. 

The problem of laminar natural-convective flow 

through a confined space was first studied by Elenbaas 
[2,3] and his initial work was concerned with the 

heated vertical channels formed by two parallel and 
infinitely wide flat plates [2]. Later Elenbaas estab- 
lished the heat dissipating characteristics of vertical 
ducts of circular and other cross-sectional shapes with 

uniform surface temperatures by transforming the 
results of his theoretical study of natural-convective 
flow through vertical parallel-plate channels [3]. How- 
ever, it was not possible to obtain the temperature 
and velocity profiles in a duct by this method of 
solution. This significant short-coming of Elenbaas’s 
method was remedied by Dyer [4], who used a finite 
difference technique to study the development of 
natural-convective flow in vertical circular ducts with 

uniform temperature and uniform flux heating. The 
method of solution was similar to that used by Bodoia 
and Osterle [s] in their study of natural-convective 
flow in a vertical channel formed by two parallel flat 
surfaces. Kageyama and Izumi [6], and Davis and 
Perona [7] also have reported on the development of 
the flow in uniform heat flux ducts for Prandtl numbers 
of @72 and @7 respectively. 

There is clearly the need to extend the previous work 
on uniform heat flux ducts [4,6,7] and also to express 
some of the pertinent data in a more usable form. 
Consequently, the purpose of the present paper is to 
provide information on the relationship between the 
heat flux and the mean wall temperature; to discuss 

the effect of different inlet conditions on the theoretical 
solutions; to discuss the effect of Prandtl number on 
the Nusselt-Rayleigh number relationship; and to 
present simplified analyses of the relationship between 
Nusselt and Rayleigh numbers at small and large values 

of the Rayleigh number. In addition, the results of 
confirmatory experimental work are presented. 

THEORY 

Equations governing thejow 
As shown diagrammatically in Fig. 1, the uniform 

flux heating of the wall of the duct produces a natural- 
convective flow with the fluid entering at the bottom 
and leaving at the top. Small density differences result- 

ing from temperature gradients in the fluid give rise to 
the buoyancy forces producing the motion. 

Throughout the analysis the following simplifying 
assumptions are made: fluid properties, except density, 
are independent of temperature; density variations are 
significant only in producing the buoyancy forces; and 
the flow is steady, laminar and incompressible, and 
axisymmetrical. Thus the well-known equations, in 

cylindrical co-ordinates, governing the flow are: 

Continuity : 

Momentum : 

Fu 1 a(m) 
ax+,a,=O (1) 

Energy : 

(4) 

As the flow is confined, the pressure within the duct p, 
will be less than the hydrostatic pressure PO, at the 
same elevation. The difference between the two 
pressures p-pO, will be known as the pressure defect 
pd, [5]. Since the hydrostatic pressure decreases with 

elevation according to 

Equation (2) can be rewritten as follows by introducing 
the coefficient of thermal buoyancy. 

= -g+p ‘b r% +e -t-pgj(T-TO). 
[r &-( f3r) kc’] 

(6) 

Equations (l), (6), (3) and (4) can be expressed in the 
following dimensionless forms by introducing the 
dimensionless variables listed in the Nomenclature. 
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Thus 

au v av 
ax+R+aR=O 

ug+v$= -z+$+;g+e (8) 

It should be noted that terms that were multiplied 
by the factor (r,,./lGr)2 have been omitted from the 
foregoing set of equations; this simplification was per- 
missible because in most practical situations (r,,,/lGr)’ 

will be very much less than unity. 
An additional governing equation is provided by the 

fact that for negligible changes in density the volume 
flow is constant throughout the duct. Thus the dimen- 
sionless volume flow Q, at all elevations is given by 

Q=2n ‘&RdR. 
s 

(11) 
0 

General Nusselt relationship 
The rate of heat transfer H,, from the bottom of the 

duct to elevation X is 

s 

1 
H, = 2~ U,B,RdR (12) 

0 

or in terms of the dimensionless heat flux F, 

H, = ZKXF. (13) 

The overall dimensionless rate of heat transfer H,, 

by definition, is 

h, H, = - 
RaJlrw 

and if h, is replaced by 2nr, lf equation (14) reduces to 

H,=g. (15) 

Dividing equation (15) by the dimensionless surface 
area 2nL, and replacing L by l/Gr (by definition 
L = l/Gr) shows that the dimensionless heat flux F, 

reduces to the reciprocal of the Prandtl number, that is 

F=;. 

Since the surface temperature varies along the duct, 
the reference temperature adopted for expressing the 
overall Nusselt number was the mean surface tem- 
perature [l], which is given by 

f’ 

J (Lx- T,)dx 
T_= ’ 

1 . 
(17) 

Thus the overall Nusselt number of the duct (based on 
the mean surface temperature and the radius of the 
duct) is 

frw 
N” = (T_-T,)k’ 

Comparing equation (18) with the expression for the 
dimensionless mean surface temperature Owm, (from 
the definition of 8,8, = (T,. - T,)k/fr,) shows that 

Nu=$. 
Wnn 

(19) 

The important relationship between the Nusselt and 
Rayleigh numbers was obtained by solving equations 
(7)-( 11) simultaneously for the following boundary 
conditions. 

Boundary conditions 

Location u V 0 pd 

X=O,R=l u=o v=o 8=0 * 
X=O,O<R<l * v=o e=o * 
O<X<L,R=l u=o v=o Pd < 0 
O<X<L,R=O v=o Pd < 0 

X=L,R=l u=o v=o Pd = 0 
X=L,R=O v=o Pd = 0 

*Information on the inlet conditions follows. 

In previous work [4,6,7] the pressure defect at both 
inlet and exit was taken to be zero. The assumption 
that the pressure defect at inlet is zero is, however, open 
to criticism [8] because it ignores even the pressure 
drop that induces the fluid in the environment to flow 
to the inlet. Therefore, in order to study the effect that 
the inlet condition has on the rate of heat transfer the 
following inlet conditions were considered : 

Uniform velocity with a zero pressure defect at inlet. 
Uniform velocity with a pressure drop produced by 
acceleration of the fluid from rest. Under these 
circumstances the pressure defect at inlet, from 
Bernoulli’s equation, is 

pdi= _!+. (20) 

Parabolic velocity profile with a pressure drop pro- 
duced by the acceleration of the fluid from rest. For 
this condition the mean pressure defect at inlet is 

Pdi = -z 
s 

1 

Qo 
U,3RdR. (21) 

It should be noted, however, that in a real situation 
the pressure drop at inlet is determined by the flow 
pattern induced in the fluid approaching the bottom 
of the duct. 

Although hitherto it has been implied that the 
uniform heat flux f, is known, this may not always be 
the case. In fact, in practice, only temperatures along 
the wall may be available. Therefore, to meet this 
situation Nusselt relationships will also be established 
for known wall temperatures. 
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Before beginning the general solution, simplified 
solutions for small and large Rayleigh numbers will be 
obtained. These solutions, although only approximate, 
provide useful data against which the computed results 
can be checked. 

Nusselt relationship for small Rayleigh numbers 
As the Rayleigh number is defined as 

Ra=g.Pr (22) 

small Rayleigh numbers can be obtained by making 
the ratio l/r, sufficiently large. Further, since the mean 
temperature of the fluid at any elevation will lag behind 
that of the wall with uniform flux heating, fully 
developed flow conditions are not produced as in a 
uniform temperature duct [4,6,7,9]. However, in this 
simplified analysis, the flow will be assumed to be fully 
developed and temperatures uniform across the duct. 
Thus the dimensionless vertical component of the 
velocity U at a radius R is approximately 

U = 2Q(l- R*)/n (23) 

and the dimensionless temperature of the fluid %, at 
elevation X 

%X = %,, (24) 

where %,, is the dimensionless temperature of the wall. 
For flow that is almost fully developed, the momentum 
equation, equation (8), reduces to 

a~, a*u i au 

ax= aR* 
-+xaR+%. (25) 

Substituting equations (23) and (24) into equation (25) 
yields 

2 = %,, - 8Q/n. (26) 

With a uniform heat flux and a velocity profile that 
does not change, %,, will increase linearly up the duct; 
and hence from equation (26) since Q is constant, 
aP,/aX will also increase linearly. Furthermore, if the 
pressure defect Pd, is zero at both the inlet and the 
exit, aP,/aX will change sign at mid-elevation. Also at 
mid-elevation, the temperature of the wall %,,,,, will be 
approximately equal to the mean wall temperature 8,. 
Hence equation (26) at mid-elevation reduces to 

e,, = 8Q/n. (27) 

Considering now the heat dissipated by the wall, the 
dimensionless rate at which the lower half of the duct 
loses heat H,,,,, is given approximately by 

&, = Q&m. (28) 

Using equation (28), equation (27) becomes 

%,, = J(f@L&). (29) 

Since the heat flux is uniform along the duct 

H,,,, = H,/2. (30) 

From equations (15) and (30) 

H,,,, = n/Ra (31) 

and substituting equation (31) into equation (29) gives 

%,,,,,, = J(8/Ra). (32) 

Finally, substituting equation (32) into equation (19) 
yields the following Nusselt relationship for small Ra 

Nu= T. JC > (33) 

To obtain the Nusselt relationship based on the mean 
wall temperature, the following Grashof number Gr+, 
incorporating the mean wall temperature [l] will 
be used. 

Gr+ = GrlNu = gjI(TW,,, - T,)r~/v*l. (34) 

Thus 

Ra+ = RaJNu. (35) 

Introducing equation (35) into equation (33) yields the 
following relationship for small Ra+ 

Nu = Ra+/8. (36) 

Nusselt relationship for boundary-layerjow 
The other situation for which an estimate of the 

Nusselt number can be obtained is where the duct has a 
small value of l/rW and consequently a large value of Ra. 
With a small value of l/r,, it is reasonable to assume 
that the temperature and velocity distributions near the 
wall will be similar to those in the laminar natural- 
convective boundary layer on a flat surface. Hence, if 
the duct were to be opened out to form a vertical flat 
surface, there should be very little difference between 
the rate of heat transfer from the flat surface thus 
formed and the duct. Nu, therefore, has to be indepen- 
dent of the radius of the duct, and this requirement 
is achieved if 

Nu = C(Ra)“’ (37) 

where C is constant. If both sides of equation (37) are 
multiplied by 1, the length of the duct, the following 
equation is obtained, which does not contain rW, the 
radius, 

Nu, = C(Ra#” (38) 

where the subscript 1 indicates that the length of the 
duct has become the characteristic dimension. Now 
the relationship for a vertical flat surface dissipating 
a uniform heat flux [l] for Pr = 0.7 is 

Nu, = @62(Ra1)‘15 (39) 

and this equation will be seen to have the same form 
as equation (38). Hence, if C in equation (37) is assumed 
to be @62 also, the Nusselt relationship for larninar 
boundary-layer flow in the duct is approximately 

Nu = 062(Ra)‘15. (40) 

To obtain the Nusselt relationship based on the mean 
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wall temperature for boundary-layer flow, equation (35) 
is introduced into equation (40); thus 

Nu = 0.55(Ra+)1’4. (41) 
It is interesting to compare equations (36) and (41) 

with the equivalent equations for uniform tem~rature 
ducts. Whereas equation (36) for small Raybigh num- 
bers gives a Nusselt number that is twice as large as 
the Nusselt number for the equivalent uniform tem- 
perature duct [4,9], the Nusselt numbers for uniform 
heat flux and uniform temperature ducts at large 
Rayleigh numbers [4,9] are almost the same. 

NU 

Method ofsolving theflow equations 
In order to obtain the relationship between the 

Nusselt and Rayleigh numbers for laminar flow, and 
to study the development of the flow in the duct, 
equations (7)~(11) were solved simultaneously on a 
high-speed digital computer. 

0.01 I I I I I I I I I I I 
I Id 104 

Since laminar flow in a uniform surface heat flux 
duct is unidirectional, the equations were solved by a 
step-by-step relaxation technique similar to that de- 
scribed by Bodoia [lo]. The assumption that the flow 
was axisymmetrical allowed the relaxation to take place 
on a two~ime~ional grid containing the axis and a 
radial line. With this method, each row of the grid was 
relaxed in turn for the unknown values, including the 
wall temperature, beginning at the bottom of the duct. 

FIG. 2. The relationship between Nusselt number and 
Rayleigh number (based on the uniform heat flux) for a 
vertical circular duct with a uniform heat flux; the inlet 
velocity Vi, is uniform and the inlet pressure defect 

Pdi, zero. 

Each solution was computed for a given Prandtl 
number and a dimensionless flow rate Q, beginning 
from an assumed inlet condition. The d~ensionless 
length of the duct L, was established by continuing the 
relaxation until the pressure defect Pd, ceased to be 
negative. The reciprocal of the dimensionless length, 
by definition, gave the Grashof number, and sub- 
stitution of the mean wall temperature @,, into equa- 
tion (19) gave the Nussdt number. 

NU 

The finite difference forms of equations (7)~(10) are 
presented in Appendix A and the method of solution 
is described in Appendix B. Since air is the fluid in 
many natural-convective processes, most of the com- 
putations were for Pr = 0.7. 

I 
I 

0.01 
I I I I I I I I I I I 

I IOL! IO" 
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theoretical results 
Nusselt relationships for Rayleigh numbers based on 

the uniform heat flux Ra, and on the mean wall tem- 
perature RaS, are shown in Figs. 2 and 3 respectively. 
From Fig. 2 the mean wall temperature of a duct with 
a known heat flux can be obtained, and from Fig. 3 
the mag~tude of the uniform heat flux for a known 
mean wall temperature. Both these figures were com- 
puted for a uniform velocity and a pressure defect of 
zero at inlet. 

FIG. 3. The reiationship between Nusselt number and 
Rayleigh number (based on the mean surface tempera- 
ture) for a vertical duct with a uniform surface heat flux; 
inlet velocity U,, is uniform and the inlet pressure defect 

P*i , ?fdrO. 

The approximate Nusselt reiationships derived for 
small and large Rayleigh numbers, equations (33) and 
(40) and equations (36) and (41), will be seen to agree 
satisfactorily with the asymptotic relationships shown 
in Figs. 2 and 3. 

The effect of varying the Prandtl number of the fluid Figure 4 shows the effect of three inlet conditions 
is shown in Fig. 2. Prandtl numbers greater than 0.7 on the Nusselt relationship. It will be seen that the 
are seen to have a negligible effect on the Nusselt- effect is negligible at small Rayleigh numbers, and the 
Rayleigh number relationship. On the other hand, for maximum variation between the Nusselt numbers 
Prandtl numbers less than 07, Fig. 2 shows that the obtained at Ra = lo5 is only 15 per cent. The negligible 
simple relationship Nu = f(Ra), not surprisingly, effect below Ra = 100 is understandable because below 
ceases to hold [l], and that the Nusselt number is a this Rayleigh number developed flow is approached in 
function of both the Rayleigh number and the Prandtl the lower part of the duct irrespective of the inlet con- 
number. ditions. It should be noted that although at large 
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IO I, I, I , I , I 

Pr-0.7 

o.olL+--w-J 
Ra 

FIG. 4. The relationship between Nusselt number and 
Rayleigh number (based on the uniform heat flux) for a 
vertical duct with a uniform surface heat flux for the 
following inlet conditions: (a) Vi is uniform and Pdi = 0; 
(b) Vi is uniform and Pdi = - (U,‘/2); (c) Vi is parabolic 

and Pdi= -I[ s 1 

Q o 
CJi’RdR 

Rayleigh numbers the different inlet conditions produce 
only a small variation in the Nusselt relationship, their 
effect on the behaviour of the flow within the duct, as 
will be shown later, is quite marked. 

It is interesting to note that Kageyama and Izumi [6], 
and Davis and Perona [7] each adopted a different way 
of presenting the Nusselt relationships to those shown 
in Figs. 2 and 3. Kageyama and Izumi [6] plotted, 
for various dimensionless flow volumes, local Nusselt 

numbers and mean Nusselt numbers against the dimen- 

sionless distance from the bottom of the duct X, while 
Davis and Perona [7] plotted local Nusselt numbers 
against the parameter x/Re,Prd (which is equivalent 
to 7cX/4Q Pr) for comparison with the work of Kays 

[ll] on forced convection in the entry region. In the 
present work, it will be recalled, the Nusselt number 

has been based on the mean wall temperature. This 
reference temperature is considered to have a greater 
practical relevance than any actual temperature on the 
wall because the latter could be distorted by a small 
variation in the uniformity of the heat flux. The 
desirability of using the mean wall temperature as the 
reference temperature was borne out when conducting 
the experimental work, which is reported in the 
following section. 

Figure 5 compares the dimensionless temperatures 
along the wall B,,,,, with those along the axis of the 
duct BCx. It will be observed that for small Rayleigh 
numbers both temperatures are similar and increase 
almost linearly, and for large Rayleigh numbers the 
temperature distribution on the wall approaches that 
of a vertical flat plate with a uniform heat flux [ 11. 

Figures 6 and 7 show the growth of the temperature 
and velocity profiles for various inlet conditions in 
ducts with a small and a large value of the Rayleigh 

8,, 
e wt 

0 0.2 0.4 0.6 0.6 

x 
1 

FIG. 5. Dimensionless temperatures along the surface B,,, 
and the centre line 8,,, in terms of the wall temperature 
at the top of the duct O,,, for uniform heat flux ducts; the 
inlet velocity Vi, is uniform and the inlet pressure defect 
Pdi, zero. The temperature along a vertical flat plate [I] is 

shown for comparison. 

21 

20 

-3 

-2 

I 

0 
3 

-2 

I 

u 

, 

-R R- 

FIG. 6. Dimensionless temperatures 8, and velocity 
profiles U, along a uniform heat flux duct with a 
small Rayleigh number. Curves for the following inlet 
conditions coincide: (a) Ui is uniform and Pdi = 0; 
(b) Ui is uniform and Pdi = - ( Ui2/2); (c) U, is parabolic 

I 

U:RdR. 

number respectively. For the small Rayleigh number 
temperature and velocity profiles that resemble fully 
developed flow are established near the bottom of the 
duct. On the other hand, for the large Rayleigh number 
Fig. 7 shows that boundary-layer flow is established 
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0 

0 
0 

-R R- 

FIG. 7. Dimensionless temperature B, and velocity 
profiles U, along a uniform heat flux duct with a large 
Rayleigh number for the following inlet conditions : 
(a) Ui is uniform and Pdi = 0; (b) Ui is uniform and 
Pdi = - (Uf/2); (c) Cri is parabolic and 

Pdi = -2 
s 

1 

Q o 
U:RdR. 

with a diminishing core of fluid that is not heated even 
at the top of the duct. This unheated core provides the 
fluid that flows into the growing boundary layer that 
develops adjacent to the wall. In the case of the low 
Rayleigh number the three inlet conditions will be seen 
in Fig. 6 to have no noticeable effect on the temperature 
and velocity profiles at and above x/l = 0.1. In con- 
trast, the effect of the inlet conditions on the velocity 
profiles for the large Rayleigh number is most marked 
at all elevations, although the temperature profiles, 
which hug the wall throughout, were not influenced 
to nearly the same extent. The similarity of the tem- 
perature profiles and the fact that the velocity profiles 
at the top of the duct are very similar near the wall 
accounts for the small effect that the inlet conditions 
have on the Nusselt relationship at large Rayleigh 
numbers as shown in Fig. 4. 

The observations of Currie and Newman [12] in 
their experimental investigation into natural-convec- 
tive flow through a vertical flat-plate channel suggest 
that a uniform inlet velocity is a reasonable assump- 
tion for a theoretical investigation. Furthermore, for 
the fluid to be induced to flow into the duct, the pressure 
at the inlet has to be lower than that of the surround- 
ings at the same elevation. Consequently, the most 
realistic of the three inlet conditions is condition (b), 
which specifies both a uniform inlet velocity and a 
pressure defect at inlet. 

Pressure defects along ducts with a small and a large 
Rayleigh number are shown in Fig. 8. In the case of 
the duct with the small Rayleigh number, the pressure 
defect curve is approximately parabolic and con- 
sequently the pressure gradient is almost linear, and 
zero at mid-elevation. This behaviour of the pressure 
defect was anticipated, it will be recalled, in deriving 
equation (33) for small values of the Rayleigh number. 
Inspection of Fig. 8 will show that the inlet conditions 
exert a much greater influence on the pressure defect 
at the large Rayleigh number. 

“0 - 

; 

V I 

FIG. 8. Dimensionless pressure defects along uniform 
heat flux ducts for a small and a large Rayleigh number 
for the following inlet conditions: (a) Ui is uniform and 
Pdi = 0; (b) Vi is uniform and Pdi = -(U~/Z); (c) Ui is 

parabolic and 

UtRdR. 

For the small Rayleigh number the curve for inlet con- 
dition (b) (not shown) lies between curves (a) and (c). 

In Fig. 9 the dimensionless volume Q, and the dimen- 
sionless overall rate of heat transfer H,, are plotted 
against Rayleigh number for Pr = 0.7. Unlike the cor- 
responding parameters ‘for the uniform surface tem- 
perature duct [4,6,7,9] Q and Ijr, do not asymptotically 
approach a common value at small Rayleigh numbers. 
In fact, Q for small Ra will be seen to approach the 
relationship obtainable from equations (27) and (32), 
namely 

Q=_ 
J(ik) (42) 

and H, for all Ra to be inversely proportional to Ra 
in accordance with equation (15). 

The behaviour of Q and Ht with Ra shown in Fig. 9 
agrees with data presented by Davis and Perona [7]. 
However, their plot of Q, by not extending beyond 
Ra = 103, is misleading in that it suggests that Q varies 
inversely with J(Ru) for all values of Ru instead of, as 
Fig. 9 shows, for only small values of Ra. 
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FIG. 9. Dimensionless flow Q, and overall heat transfer 
H,, for uniform surface heat flux ducts plotted against 
Rayleigh number for the following inlet conditions: 
(a) U, is uniform and Pdi = 0; (b) Vi is uniform and 
Pdi = - (U,2/2); (c) Vi is parabolic and 

Pdi = - YY 
s 

1 

Q o 
@RdR. 

Curve of dimensionless flow Q, by Davis and Perona 
[7] extends from Ra = 1.5 to 700 and coincides with 

curve (a). 

The dimensionless mean wall temperature 0,,,,,,, and 
temperature of the wall at the top of the duct &, are 
shown in Fig. 10 plotted against the Rayleigh number. 
At small Rayleigh numbers the dimensionless mean 
wall temperature is about one-half of the dimensionless 

100 I , I 1 I 

Ra 

FIG. 10. Dimensionless temperature on the wall at the top 
of the duct 0,. and dimensionless mean wall temperature 
e for uniform heat flux ducts plotted against Rayleigh 
nzber for the following inlet conditions: (a) Vi is uniform 
and Pdi = 0; (b) Vi is uniform and Pdi = -(lJ:/2); (c) Vi is 
parabolic and 

U?RdR. 

In the case of 0, the curve for inlet condition(b) (not shown) 
lies between curves (a).and (c). 

temperature at the top of the duct; this fact, it will be 
recalled, is consistent with the predictions made in 
establishing equation (33). However, as the Rayleigh 
number is increased it will be seen that the ratio of 
&,, to BWl becomes larger than a half. This relationship 
between &,,, and &,,l with Ra can be readily explained 
by examining the shape of the curves of 0,,/&, in Fig. 5. 

EXPERIMENTAL STUDY 

Since the theory was based on an ideal fluid whose 

properties, except for density in producing the buoy- 
ancy forces, were independent of temperature, it was 
considered desirable to conduct experiments in order 
to test the validity of at least part of the theoretical 
analysis. Consequently, with air as the working fluid 
experiments were carried out for Rayleigh numbers 
between 1 and 3000. This interval was considered 
interesting because it fell between the two extreme flow 
regimes for which additional theoretical information 
was available for corroboration, namely equations (33) 
and (40). 

In order to span this range of Rayleigh numbers 
satisfactorily three ducts of different sizes were used. 
The ducts were 19.1, 25.4 and 46.7mm in internal 
diameter and were all 1.22mm long. Each duct was a 
thin-wall stainless steel tube and was heated by five, 
independently adjustable, electrical resistance elements. 
The elements were made of nichrome wire, helically 
wound around the external surface of the tube and 
positioned end-for-end along it. The external heat loss 
was minimised by insulating the exterior of the tube 
with fibre-glass, which was wrapped around it to a 
radial thickness of 150mm. Fourteen thermocouples 
were embedded in the wall of the tube to monitor 
temperatures along the internal surface. 

The difficulty of measuring small heat fluxes was 
overcome by the expedient of accepting the theoreti- 
cally established distributions of wall temperature 
(shown in Fig. 5). With this compromise it was possible 
to obtain uniform flux heating by simply controlling 
the wall temperatures. Thus temperatures along the 
wall were matched, by adjusting the current in each 
of the five heating elements, with the theoretical tem- 
perature profile. Despite the thickness of insulation sur- 
rounding the tube, the external heat loss was com- 
parable with the heat dissipated by the internal surface 
and therefore had to be taken into account. The heat 
loss was established by a similar heating of the duct 
with its ends closed and the difference between the 
two heat inputs gave a reasonable approximation to 
the heat dissipated by the internal surface itself. This 
method of determining the external heat loss is justified 
by the fact that owing to the air in the blocked duct 
increasing in an upward direction a stable situation 
was created with negligible air movements. 

Even with five independently adjustable heating 
elements, it was not possible to obtain exactly the 
desired temperatures at the extremities of the duct. 
However, these deficiencies were of minor consequence 
since the mean wall temperature was used as the 
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reference temperature for calculating the Nusselt From the theoretical investigation the following con- 
number. clusions can be drawn: 

The properties of air used in the Nusselt and Rayleigh 
numbers were established in the following manner; the 
coefficient of thermal buoyancy was evaluated at am- 
bient temperature and all other properties at the mean 
wall temperature. 

1. For Rayleigh numbers less than one the flow re- 
sembles fully developed flow and the Nusselt number 
varies with the square root of the Rayleigh number 
based on the uniform heat flux. For Rayleigh numbers 
greater than 1000 boundary-layer flow is produced and 
the Nusselt number varies with the fifth root of the 
Rayleigh number based on the uniform heat flux. 

t 
Pr 9 0.7 

0.01 
I I I I I I 1 I I I I 1 

I 102 104 

Ra 

FIG. 11. Experimentally determined Nusselt numbers vs 
Rayleigh numbers. The convected tluid was air. The theor- 
etical curve for Pr = 0.7 from Fig. 2 is shown for comparison. 

The experimentally determined Nusselt numbers are 
presented in Fig. 11; they will be seen to agree satis- 
factorily with the theory. It is interesting to note that 
although the experiments were conducted in a closed 
room within a large draught shield, the flow approach- 
ing the inlet, made visible by smoke, was neither steady 
nor axisymmetrical owing to the disturbing influence 
of very small air movements in the room. The fact that 
with these inlet conditions the experiments yielded 
overall Nusselt numbers that agreed with the theory 
corroborates the theoretical finding that the inlet con- 
ditions, within reason, are not important parameters in 
the range of Rayleigh numbers investigated exper- 
imentally. 

CONCLUSIONS 

In this analysis of the problem of natural-convective 
flow in a uniform heat flux duct the step-by-step 
numerical method has proved to be useful and flexible. 
Of considerable importance was the fact that the tech- 
nique readily lent itself to investigating different 
boundary conditions. 

In order to facilitate the practical use of the data 
that have been established, the Nusselt number was 
baaed on the mean wall temperature. Furthermore, 
Nusselt-Rayleigh number relationships have been 
presented in such a way that either the mean wall tem- 
perature can be ascertained from a known uniform 
heat flux or vice versa. 

2. The Nusselt number for Prandtl numbers greater 
than or equal to 0.7 is a function of the Rayleigh number 
alone; however, for Prandtl numbers less than 0.7 the 
Prandtl number also enters the relationship. 

3. The relationship between the overall Nusselt 
number and the Rayleigh number is relatively insen- 
sitive to small changes in the inlet conditions. 

Although the theory was developed for an ideal fluid, 
the experiments with air yielded data that agreed satis- 
factorily with the theoretical relationship between 
Nusselt and Rayleigh numbers. This indicates that the 
theory would be applicable to other fluids whose 
properties do not vary too markedly with temperature. 

It would be interesting to extend the experimental 
work into the higher Rayleigh number range where the 
effects of different inlet conditions become more pro- 
nounced. However, for the results to be of any real 
value the flow pattern at inlet would have to be estab- 
lished and the theoretical results re-computed accord- 
ingly for comparison. 
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APPENDIX A 
Finite Difference Equations 

Since the flow in the duct was assumed to be axisym- 
metrical, the relaxation was performed on a two-dimensional 
rectangular grid containing the axis and a radial line. 

In the finite difference forms of equations (7), (8) and (10) 
that follow, it will be seen that special equations were 
required for points on the axis of the duct. For these 
equations, terms involving (l/R)(~/~R), which in finite differ- 
ence form cannot be directly evaluated at R = 0, were re- 
duced to the form 8/dR2 by L’Hospital’s rule. 

Continuity equation: 

When 0 < R < 1: 

2 

&+&+I [ 

QC+l &,I--Vj.tRk 

AR 1 p,k+l +Uj,k)-(Uj-l.k+13.L/j-1 k) 

2AX 
L-=0. (Al) 

When R = 0 and 1: 

5.k = 0. 6421 
Momentum equation: 

WhenO<R<l: 

When R = 0: 

Energy equation: 

WhenO<R<l: 

WhenR=O: 

APPENDIX B 
Solution by Relaxation 

The finite difference equations, equations (Al)-(A6), were 
solved by a step-by-step relaxation procedure, which was 
initiated at the bottom of the duct for particular values of 
the dimensionless flow Q, and the Prandtl number, and 
for a specified inlet condition. 

As the local wall temperature was unknown, it had to be 
determined together with the fluid temperature at the grid 
points on each relaxation row. An expression will now be 
derived that was used to obtain the surface temperature on 
a row. The heat transferred from inlet to elevation X is 
given by 

H, = 27cXF. (BE) 

Using equation (16) to replace F (dimensionless heat flux) 
in equation (Bl) gives 

2aX 
fix = PF 

and combining equations (B2) and (12) yields 

V,t&RdR. (B3) 

Equation (B3) thus links the surface temperature with the 
Ruid temperature. The relaxation procedure that was 
adopted is as follows: 

1. Values were assigned to Q and Pr. 
2. On the bottom row of the relaxation grid, Row 1, the 

pressure defect Pdl, and the velocities Ur,t, were set equal 
to the specified inlet conditions, the temperatures of the 
surface and the fluid were set equal to zero, and the radial 
velocities VI,,, were set equal to zero. 

3. On the second row: 
U2,* was initially set equai to Ul,k, and 
f& was initiaily set equal to %l,k. 

4. The momentum equation, equations (AZ) and (A3), was 
relaxed for al! fluid points on Row 2. Since Uz+ and Pdz were 
both unknown at each point, the equation was relaxed for 
the variable 

where C = 2 for 0 < R < 1 and C = 4 for R = 0. As each 
point on Row 2 has the same value of Pdz (from equation (9)) 
the two variables were separated by using equation (11) in 
finite difference form. 

5. The continuity equation, equations (Al) and (AZ), was 
solved for grid points on Row 2 to give Vz,t. It is worth 
mentioning that although the continuity equation is of the 
first order no difficulties were encountered in obtaining 
sensible values of V,,, owing to the assumed axisymmetrica! 
nature of the flow. 

6. The energy equation, equations (AS) and (A6), were 
solved for al! points in the fluid on Row 2 and then equation 
(B3) was solved to obtain a new estimate of the surface 
temperature. This procedure was repeated until all tempera- 
tures on Row 2 were satisfactorily relaxed. 

7. Values of the variables on Row 3 and subsequent rows 
until Pd ceased to be negative were found in a similar way. 
Linear interpolation yielded the elevation at which Pd 
returned to zero; this elevation corresponded to the top of 
the duct. 

8. The reciprocal of the dimensionless length of the duct 
yielded the Grashof number, and the Nusselt number was 
obtained from equation (19). 
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LE DEVELOPPEMENT DE LA CONVECTION NATURELLE LAMINAIRE DANS 
UNE CONDUIT-E VERTICALE AVEC FLUX DE CHALEUR CONSTANT 

R&sum&-On prksente une Qtude thborique et experimentale de l’tcoulement laminaire en convection 
naturelle dam des conduites verticales chat&es. Les conduites ont une section droite circulaire; leurs 
extr&mites sent ouvertes et leur surface interne dissipe unifo~~ment la chaleur. 

Les champs de vitesse et de tempirature ainsi que la relation entre les nombres de Nusselt et de 
Rayleigh sont obtenus par la resolution des equations fondamentales a l’aide dune technique numtrique 
de pas a pas. Deux nombres de Rayleigh sont introduits, l’un est exprimt en fonction du flux thermique 
constant et l’autre en fonction de la temperature moyenne de paroi. L’influence du nombre de Prandtl 
sur la relation qui lie les nombres de Nusselt et de Rayleigh est discutie. Trois conditions a l’entrke 
sont examinees; elles ont toutes fourni la m&me expression du nombre de Nusselt pour les faibles nombres 
de Rayleigh, et les differences entre les expressions du nombre de Nusselt obtenues aux nombres de 
Rayleigh elevks ont ttt trouvkes hibles. 

Les nombres de Nusselt d’origine experimentale, pair &ant utilisi comme fluide convectif, sont en 
accord satisfaisant avec les relations thtoriques. 

DIE AUSBILDUNG DER LAMINAREN, NATURLICHEN KO~EKTIONSSTR~MUNG 
IN EINEM SENKRE~HTEN ROHR MIT KONSTANTEM W~RMESTROM 

Zusammenfassung-Es wird iiber eine theoretische und experimentelle Studie der laminaren, freien 
Konvektionsstromung in senkrechten, beheizten Rohren berichtet. Die runden Rohre sind an beiden 
Enden offen und iibertragen auf ihrer Innenseite einen konstanten Warmesttom. 

Die Temperatur- und Geschwindigkeitsfelder und die Beziehung zwischen den Nusselt- und Rayleigh- 
Zahlen wurden durch die Losung der maggebenden Gleichungen mit Hilfe eines numerischen 
Di~erenzenverfahrens ermittelt. Es werden zwei Rayleigh-Zahlen definiert: die eine auf der Basis des 
konstanten W~rmestroms und die andere mit der mittleren Wandtemperatur. Der Einflul3 der Prandtl-Zahl 
auf die Nusselt- bzw. Rayleigh-Zahl wird erlautert. Drei verschiedene Einstrombedingungen wurden 
untersucht; Bei kleinen Rayleigh-Zahlen ergab sich dieselbe Nusselt-Beziehung, wiihrend bei grol3en 
Rayleigh-Zahlen nur kleine Differenzen in der Nusselt-Beziehung auftraten. Experiment41 ermittelte 

Nusselt-Zahlen fur Luft stimmen mit der theoretischen Beziehung zufriedenstellend iiberein. 

PA3BMTME ~AM~HAPHOrO CBO~O~HO-KOHBEKT~3HOrO TEYEHHR B 
BEPTMKAJIbHOM KAHAJIE C I’IOCTOIIHHbIM I’IOTOKOM TEIIJIA 

&lHOTaWl- npejlCTaBneHb1 pe3yJIbTaTbI TeOpeT&iYeCKOrO H 3KCllepHMeHTaJIbHO~O HCCne~OBaHHR 

naMHHapHOr0 CBO6OAHO-KOHBeKTEiEHOrO TeYeHWI1 B HarpeBaeMblX BepTBKanbHblXKaHaJIaX.KaHanbl 

KpyrnOrOCeYeHUn,OTKpblTbIeC 06owx KOHUOBHCKlOCTOSIHHbIM KIOTOKOMTC~aHa EiXBHyTpeHHHX 

IlOBepXHOCTFiX. 

M3 ptWIeHWl OCHOBHbIX ypaBHeH~~ MeTOJlOM nOCne~OBaTe~bH~X ~p~6n~xeH~~ YIlCJIeHHO S-iOny- 

YeHbI rIOJI5ITeMnepaTyp RCKO~OCTIIW~~BNCBMOCTR Memy YHCnaMSi HyCCeJIbTaIi &I~~.BBo~~c~ 

naavncna Penes:onno Bb~pawteHoYepe3nocrosmb1B TennoaoB noToK nnpyroe-uepe3cpeAHmo 
TeMIlepaTypy CTeHKU. 06cymaeTcsi BJUiRHHe YHCna npaHATJIK Ha OTHOIU~HIIe IIleXCJIy YHCJXlMH 

HyccenbTaH PCne~.~CCne~OB~~CbTp~yC~OBUlHaBXOHe;BCeOHBAa~~OAHyIITy1Ke3aBHCBMOCTb 

HyccenbTanm MWlblXYHCeJl h'IeS II TOnbKO ManbIe pB3HOCTH Memy 3aBWCUMOCTf5MA HyCCenbTa 

nnsi6onbu~~x yricen Penes. 
3KC~ep~MeHTanbHO Ha~~eH~bXe 3HaYeHBR YACeJl HycCenbTa AJIll BOSqyXa B KaYeCTBe KOHBeKTH- 

py%OILVd Cwnbl XOpOUlO COrJIaCytoTCS C TeO~~YeCK~M~pe3y~bTaTaM~. 


