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Abstract—An account of a theoretical and experimental study of laminar natural-convective flow in
heated vertical ducts is presented. The ducts are open-ended and circular in cross-section and their
internal surfaces dissipate heat uniformly.

Temperature and velocity fields and the relationship between Nusselt and Rayleigh numbers were

obtained by solving the governing equations by a step-by-step numerical technique. Two Rayleigh numbers
are introduced, one expressed in terms of the uniform heat flux and the other in terms of the mean wall
temperature. The influence that the Prandtl number has on the relationship between the Nusselt and
Rayleigh numbers is discussed. Three inlet conditions were examined; they all gave the same Nusselt
relationship at small Rayleigh numbers and the differences between the Nusselt relationships obtained
at large Rayleigh numbers were only small.

Experimentally determined Nusselt numbers, with air as the convected fluid, agreed satisfactorily with
the theoretical relationship.

NOMENCLATURE

specific heat at constant pressure;
constant;

diameter of duct;

uniform surface heat flux;

dimensionless uniform heat flux, 1/Pr;
acceleration of gravity;

Grashof number, gBfr5,/v2lk;

Grashof number, g Bf14/v3k;

Gr/Nu;

heat dissipation (from inlet to elevation x);
dimensionless heat dissipation, h./Raflr,,
(from inlet to elevation X);

thermal conductivity;

length of duct;

dimensionless length, 1/Gr;

Nusselt number, fr,,/(T,m— To)k or 1/6,,,;
pressure;

dimensionless pressure, pri/pl*v2Gr?;
volume flow;

dimensionless flow, q/IvGr;

radial co-ordinate;

dimensionless radial co-ordinate, r/r,,;
Rayleigh number, GrPr;

Ra/Nu;

temperature;

velocity in x-direction;

dimensionless velocity in x-direction,
url/lvGr;

velocity in r-direction;

dimensionless velocity in R-direction, vr,,/v;

vertical co-ordinate;
dimensionless vertical co-ordinate, x/IGr.
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Greek symbols
B, coefficient of thermal buoyancy;
0, dimensionless temperature, (T— To)k/ fr..;
I8 dynamic viscosity;
v, kinematic viscosity;
P, density.
Subscripts
c, axis of duct;
d, defect (pressure), diameter;
i condition at inlet;
L length of duct;
m, mean value;
me, mid-elevation;
o, ambient condition;
r, radius of duct;
top of duct;

t’

w, wall of duct;

wm, wall, mean value;
wt, wall, top;

wx,  wall, location;

X, elevation x or X.

INTRODUCTION

THERE is often the need to cool the internal surfaces
of vertical open-ended ducts and of banks of tubes by
natural convection, despite the low rates of heat transfer
that this convective process affords. Thus information
on the behaviour of natural-convective flow through
confined spaces has wide use, which in recent years has
included research and development in the diverse fields
of nuclear and solar energy.

The investigation reported in the present paper deals
with vertical circular ducts whose internal surfaces
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F16. 1. Diagrammatic view of a vertical circular
duct with a uniform surface heat flux.

dissipate heat uniformly. Such a duct is shown
diagrammatically in Fig. 1. It will be seen that the
natural-convective flow induced by the uniform surface
heat flux produces temperatures on the wall that
increase along the duct. Unlike the temperature dis-
tribution that occurs along a vertical flat surface with
a uniform heat flux [1], the distribution of the tem-
perature along the wall of the duct is not fixed but
varies with the geometry of the duct and the heat flux.

The problem of laminar natural-convective flow
through a confined space was first studied by Elenbaas
[2,3] and his initial work was concerned with the
heated vertical channels formed by two parallel and
infinitely wide flat plates [2]. Later Elenbaas estab-
lished the heat dissipating characteristics of vertical
ducts of circular and other cross-sectional shapes with
uniform surface temperatures by transforming the
results of his theoretical study of natural-convective
flow through vertical parallel-plate channels [ 3]. How-
ever, it was not possible to obtain the temperature
and velocity profiles in a duct by this method of
solution. This significant short-coming of Elenbaas’s
method was remedied by Dyer [4], who used a finite
difference technique to study the development of
natural-convective flow in vertical circular ducts with
uniform temperature and uniform flux heating. The
method of solution was similar to that used by Bodoia
and Osterle [5] in their study of natural-convective
flow in a vertical channel formed by two parallel flat
surfaces. Kageyama and Izumi [6], and Davis and
Perona [7] also have reported on the development of
the flow in uniform heat flux ducts for Prandtl numbers
of 0-72 and 0-7 respectively.

There is clearly the need to extend the previous work
on uniform heat flux ducts [4, 6, 7] and also to express
some of the pertinent data in a more usable form.
Consequently, the purpose of the present paper is to
provide information on the relationship between the
heat flux and the mean wall temperature; to discuss
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the effect of different inlet conditions on the theoretical
solutions; to discuss the effect of Prandtl number on
the Nusselt-Rayleigh number relationship; and to
present simplified analyses of the relationship between
Nusselt and Rayleigh numbers at small and large values
of the Rayleigh number. In addition, the results of
confirmatory experimental work are presented.

THEORY

Equations governing the flow

As shown diagrammatically in Fig. 1, the uniform
flux heating of the wall of the duct produces a natural-
convective flow with the fluid entering at the bottom
and leaving at the top. Small density differences result-
ing from temperature gradients in the fluid give rise to
the buoyancy forces producing the motion.

Throughout the analysis the following simplifying
assumptions are made: fluid properties, except density,
are independent of temperature; density variations are
significant only in producing the buoyancy forces; and
the flow is steady, laminar and incompressible, and
axisymmetrical. Thus the well-known equations, in
cylindrical co-ordinates, governing the flow are:

Continuity:
el <1>
Momentum:
ou du 61) 10 [ ou\ &u
P[a“a]: T TH [m(a—) 33 ] rg
ov  Ov p 0
el o
Energy
or 8T k [8*T 1eT @&*T
“ox 737=;)vc‘,,|}6r_{+r6r+0xljl' @)

As the flow is confined, the pressure within the duct p,
will be less than the hydrostatic pressure p,, at the
same elevation. The difference between the two
pressures p—po, will be known as the pressure defect
Pa> [5]- Since the hydrostatic pressure decreases with
elevation according to

dpg
G = " Pos- (%

Equation (2) can be rewritten as follows by introducing
the coefficient of thermal buoyancy.

0p,,+ 10/ ou +62u
= ———— —_——— r— —_—
ox Hlrar\Tor ox?

Equations (1), (6), (3) and (4) can be expressed in the
following dimensionless forms by introducing the
dimensionless variables listed in the Nomenclature.

]+pyB(T—To)- (6)
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Thus
g—;+%+‘2—2=0 N
U%+V%=—%+%+%%+ 8)
%:0 9

Uae+Vao_1 629+1ae (10)
dX ' OR Pr|oR® ROR]

It should be noted that terms that were multiplied
by the factor (r,/IGr)* have been omitted from the
foregoing set of equations; this simplification was per-
missible because in most practical situations (r,,/IGr)?
will be very much less than unity.

An additional governing equation is provided by the
fact that for negligible changes in density the volume
flow is constant throughout the duct. Thus the dimen-
sionless volume flow Q, at all elevations is given by

Q=2n r U.RdR. (11)

0

General Nusselt relationship
The rate of heat transfer H,, from the bottom of the
duct to elevation X is

1
H = 27:] U.6,RdR (12)
1]
or in terms of the dimensionless heat flux F,
H,=2rnXF. (13)

The overall dimensionless rate of heat transfer H,,
by definition, is

h,
H=-—"t_
‘= Rafir, (14)

and if h, is replaced by 2nr,, If equation (14) reduces to

2
H=—.
= (15)

Dividing equation (15) by the dimensionless surface
area 2nL, and replacing L by 1/Gr (by definition
L = 1/Gr) shows that the dimensionless heat flux F,
reduces to the reciprocal of the Prandtl number, that is

: (16
TP

Since the surface temperature varies along the duct,
the reference temperature adopted for expressing the
overall Nusselt number was the mean surface tem-
perature [ 1], which is given by

I
f (T —T,) dx
T =

, )
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Thus the overall Nusselt number of the duct (based on
the mean surface temperature and the radius of the
duct) is

Jrw
(Tom— Tk~
Comparing equation (18) with the expression for the

dimensionless mean surface temperature 6., (from
the definition of 6, 8,,, = (T, — T,)k/ fr,,) shows that

Nu= (18)

(19)

The important relationship between the Nusselt and
Rayleigh numbers was obtained by solving equations
(7)-(11) simultaneously for the following boundary
conditions.

Boundary conditions

Location U 14 0 Py
X=0,R=1 U=0 V=0 6=0 *
X=0,0<R<1 * V=0 =0 *
0<X<L R=1 U=0 V=0 Py<0
0<X<L R=0 V=0 P<0
X=LR=1 U=0 V=0 P,=0
X=L R=0 V=0 P, =

*Information on the inlet conditions follows.

In previous work [4, 6, 7] the pressure defect at both
inlet and exit was taken to be zero. The assumption
that the pressure defect at inlet is zero is, however, open
to criticism [8] because it ignores even the pressure
drop that induces the fluid in the environment to flow
to the inlet. Therefore, in order to study the effect that
the inlet condition has on the rate of heat transfer the
following inlet conditions were considered :

(a) Uniform velocity with a zero pressure defect at inlet.

(b) Uniform velocity with a pressure drop produced by
acceleration of the fluid from rest. Under these
circumstances the pressure defect at inlet, from
Bernoulli’s equation, is

U?

Pdi= )

(20)

(c) Parabolic velocity profile with a pressure drop pro-
duced by the acceleration of the fluid from rest. For
this condition the mean pressure defect at inlet is

1
Py= -2 f UZRdR. 21)
QJo
It should be noted, however, that in a real situation
the pressure drop at inlet is determined by the flow
pattern induced in the fluid approaching the bottom
of the duct.

Although hitherto it has been implied that the
uniform heat flux f, is known, this may not always be
the case. In fact, in practice, only temperatures along
the wall may be available. Therefore, to meet this
situation Nusselt relationships will also be established
for known wall temperatures.
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Before beginning the general solution, simplified
solutions for small and large Rayleigh numbers will be
obtained. These solutions, although only approximate,
provide useful data against which the computed results
can be checked.

Nusselt relationship for small Rayleigh numbers
As the Rayleigh number is defined as

gBfrs
Ra= vzlkw .Pr

small Rayleigh numbers can be obtained by making
the ratio I/r,, sufficiently large. Further, since the mean
temperature of the fluid at any elevation will lag behind
that of the wall with uniform flux heating, fully
developed flow conditions are not produced as in a
uniform temperature duct [4, 6, 7, 9]. However, in this
simplified analysis, the flow will be assumed to be fully
developed and temperatures uniform across the duct.
Thus the dimensionless vertical component of the
velocity U at a radius R is approximately

U =20(1-R¥/n

(22)

(23)

and the dimensionless temperature of the fluid 0, at
elevation X

0, = O (24)

where 0, is the dimensionless temperature of the wall.
For flow that is almost fully developed, the momentum
equation, equation (8), reduces to

8P, U 10U
= 4§ 25
éX OR? * R 6R + (5)
Substituting equations (23) and (24) into equation (25)
yields

Sl SR 26
5y = w80/ (26)
With a uniform heat flux and a velocity profile that
does not change, 8, will increase linearly up the duct;
and hence from equation (26) since Q is constant,
0P, /0X will also increase linearly. Furthermore, if the
pressure defect P;, is zero at both the inlet and the
exit, 0P;/0X will change sign at mid-elevation. Also at
mid-elevation, the temperature of the wall 8,,,, will be
approximately equal to the mean wall temperature 0,,,,,.

Hence equation (26) at mid-elevation reduces to

gwm = 8Q/TC

Considering now the heat dissipated by the wall, the
dimensionless rate at which the lower half of the duct
loses heat H,,, is given approximately by

27

Hpe = Q8. (28)
Using equation (28), equation (27) becomes
Gwm = \/(SHme/n) 29)
Since the heat flux is uniform along the duct
H,. = H,/2. (30)
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From equations (15) and (30)

H,, = n/Ra (31)

and substituting equation (31) into equation (29) gives
Bm = +/(8/Ra). (32)

Finally, substituting equation (32) into equation (19)
yields the following Nusselt relationship for small Ra

v 2

To obtain the Nusselt relationship based on the mean
wall temperature, the following Grashof number Gr*,
incorporating the mean wall temperature [1] will
be used.

(33)

Gr* = Gr/Nu = gB(T,— T,)ra/v*l. (34)

Thus

Ra* = Ra/Nu. (35)

Introducing equation (35) into equation (33) yields the
following relationship for small Ra™*

Nu = Ra™*/8. (36)
Nusselt relationship for boundary-layer flow

The other situation for which an estimate of the
Nusselt number can be obtained is where the duct has a
small value of i/r,, and consequently a large value of Ra.
With a small value of I/r,,, it is reasonable to assume
that the temperature and velocity distributions near the
wall will be similar to those in the laminar natural-
convective boundary layer on a flat surface. Hence, if
the duct were to be opened out to form a vertical flat
surface, there should be very little difference between
the rate of heat transfer from the flat surface thus
formed and the duct. Nu, therefore, has to be indepen-
dent of the radius of the duct, and this requirement
is achieved if

Nu = C(Ra)'/? 37
where C is constant. If both sides of équation (37) are
multiplied by /, the length of the duct, the following
equation is obtained, which does not contain r,, the
radius,

Nu; = C(Ra))'* (38)
where the subscript ! indicates that the length of the
duct has become the characteristic dimension. Now
the relationship for a vertical flat surface dissipating
a uniform heat flux [1] for Pr = 07 is

Nuy = 0-62(Ra;)'’° (39)

and this equation will be seen to have the same form
as equation (38). Hence, if C in equation (37) is assumed
to be 062 also, the Nusselt relationship for laminar

boundary-layer flow in the duct is approximately
Nu = 0-62(Ra)’>. (40)

To obtain the Nusselt relationship based on the mean
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wall temperature for boundary-layer flow, equation (35)
is introduced into equation (40); thus
Nu = 0:55(Ra™)*, 41)
It is interesting to compare equations {36) and {41)
with the equivalent equations for uniform temperature
ducts. Whereas equation (36) for small Rayleigh num-
bers gives a Nusselt number that is twice as large as
the Nusselt number for the equivalent uniform tem-
perature duct [4, 9], the Nusselt numbers for uniform
heat flux and uniform temperature ducts at large
Rayleigh numbers [4, 9] are almost the same.

Method of solving the flow equations

In order to obtain the relationship between the
Nusselt and Rayleigh numbers for laminar flow, and
to study the development of the flow in the duct,
equations (7)-(11) were solved simultaneously on a
high-speed digital computer.

Since laminar flow in a uniform surface heat flux
duct is unidirectional, the equations were solved by a
step-by-step relaxation technique similar to that de-
scribed by Bodoia [10]. The assumption that the flow
was axisymmetrical allowed the relaxation to take place
on a two-dimensional grid containing the axis and a
radial line. With this method, each row of the grid was
relaxed in turn for the unknown values, including the
wall temperature, beginning at the bottom of the duct.

Each solution was computed for a given Prandtl
number and a dimensionless flow rate Q, beginning
from an assumed inlet condition. The dimensionless
length of the duct L, was established by continuing the
relaxation until the pressure defect P, ceased to be
negative. The reciprocal of the dimensionless length,
by definition, gave the Grashof number, and sub-
stitution of the mean wall temperature 8,,,,, into equa-
tion (19) gave the Nusselt number.

The finite difference forms of equations (7)—(10) are
presented in Appendix A and the method of solution
is described in Appendix B. Since air is the fluid in
many natural-convective processes, most of the com-
putations were for Pr = 0-7.

Theoretical results

Nusselt relationships for Rayleigh numbers based on
the uniform heat flux Ra, and on the mean wall tem-
perature Ra™, are shown in Figs. 2 and 3 respectively.
From Fig. 2 the mean wall temperature of a duct with
a known heat flux can be obtained, and from Fig. 3
the magnitude of the uniform heat flux for a known
mean wall temperature. Both these figures were com-
puted for a uniform velocity and a pressure defect of
zero at inlet.

The effect of varying the Prandtl number of the fluid
is shown in Fig. 2. Prandtl numbers greater than 0-7
are seen to have a negligible effect on the Nusselt-
Rayleigh number relationship. On the other hand, for
Prandt! numbers less than 07, Fig. 2 shows that the
simple relationship Nu = f(Ra), not surprisingly,
ceases to hold [1], and that the Nusselt number is a
function of both the Rayleigh number and the Prandtl
number.
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FI1G. 2. The relationship between Nusselt number and

Rayleigh number (based on the uniform heat flux) for a

vertical circular duct with a uniform heat flux; the inlet

velocity U;, is uniform and the inlet pressure defect
Py, zero.
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FiG. 3. The relationship between Nusselt number and

Rayleigh number (based on the mean surface tempera-

ture) for a vertical duct with a uniform surface heat flux;

inlet velocity Uy, is uniform and the inlet pressure defect
Py, zero.

The approximate Nusselt relationships derived for
small and large Rayleigh numbers, equations (33) and
{40) and equations (36) and (41), will be seen to agree
satisfactorily with the asymptotic relationships shown
in Figs. 2 and 3.

Figure 4 shows the effect of three inlet conditions
on the Nusselt relationship. It will be seen that the
effect is negligible at small Rayleigh numbers, and the
maximum variation between the Nusselt numbers
obtained at Ra = 10° is only 15 per cent. The negligible
effect below Ra = 100 is understandable because below
this Rayleigh number developed flow is approached in
the lower part of the duct irrespective of the inlet con-
ditions. It should be noted that although at large
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FiG. 4. The relationship between Nusselt number and
Rayleigh number (based on the uniform heat flux) for a
vertical duct with a uniform surface heat flux for the
following inlet conditions: (a) U; is uniform and Pj; = 0;
(b) U; is uniform and Py = —(U?/2); (c) U; is parabolic

T 1
and P,“ = '—a‘j‘ IJIBRdR

]

Rayleigh numbers the different inlet conditions produce
only a small variation in the Nusselt relationship, their
effect on the behaviour of the flow within the duct, as
will be shown later, is quite marked.

It is interesting to note that Kageyama and Izumi [6],
and Davis and Perona [ 7] each adopted a different way
of presenting the Nusselt relationships to those shown
in Figs. 2 and 3. Kageyama and Izumi [6] plotted,
for various dimensionless flow volumes, local Nusselt
numbers and mean Nusselt numbers against the dimen-
sionless distance from the bottom of the duct X, while
Davis and Perona [7] plotted local Nusselt numbers
against the parameter x/Re; Prd (which is equivalent
to nX/4Q Pr) for comparison with the work of Kays
[11] on forced convection in the entry region. In the
present work, it will be recalled, the Nusselt number
has been based on the mean wall temperature. This
reference temperature is considered to have a greater
practical relevance than any actual temperature on the
wall because the latter could be distorted by a small
variation in the uniformity of the heat flux. The
desirability of using the mean wall temperature as the
reference temperature was borne out when conducting
the experimental work, which is reported in the
following section.

Figure 5 compares the dimensionless temperatures
along the wall 0,,,, with those along the axis of the
duct 8.,. It will be observed that for small Rayleigh
numbers both temperatures are similar and increase
almost linearly, and for large Rayleigh numbers the
temperature distribution on the wall approaches that
of a vertical flat plate with a uniform heat flux [1].

Figures 6 and 7 show the growth of the temperature
and velocity profiles for various inlet conditions in
ducts with a small and a large value of the Rayleigh

J.R. DYER
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F1G. 5. Dimensionless temperatures along the surface 6,,,

and the centre line ., in terms of the wall temperature

at the top of the duct 8,,, for uniform heat flux ducts; the

inlet velocity U, is uniform and the inlet pressure defect

Py, zero. The temperature along a vertical flat plate [1] is
shown for comparison.
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F1G. 6. Dimensionless temperatures 8, and velocity
profiles U, along a uniform heat flux duct with a
small Rayleigh number. Curves for the following inlet
conditions coincide: (a) U; is uniform and P, = 0;
(b) U;is uniform and Py; = — (U?/2);(c) U, is parabolic

n 1
and Py; = —aj UPRdR.
0

number respectively. For the small Rayleigh number
temperature and velocity profiles that resemble fully
developed flow are established near the bottom of the
duct. On the other hand, for the large Rayleigh number
Fig. 7 shows that boundary-layer flow is established
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Fic. 7. Dimensionless temperature 4, and velocity
profiles U, along a uniform heat flux duct with a large
Rayleigh number for the following inlet conditions:
(a) U; is uniform and Py = 0; (b) U; is uniform and
Py = —(U#/2); (¢) U, is parabolic and
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with a diminishing core of fluid that is not heated even
at the top of the duct. This unheated core provides the
fluid that flows into the growing boundary layer that
develops adjacent to the wall. In the case of the low
Rayleigh number the three inlet conditions will be seen
inFig. 6 to have no noticeable effect on the temperature
and velocity profiles at and above x/ = 0-1. In con-
trast, the effect of the inlet conditions on the velocity
profiles for the large Rayleigh number is most marked
at all elevations, although the temperature profiles,
which hug the wall throughout, were not influenced
to nearly the same extent. The similarity of the tem-
perature profiles and the fact that the velocity profiles
at the top of the duct are very similar near the wall
accounts for the small effect that the inlet conditions
have on the Nusselt relationship at large Rayleigh
numbers as shown in Fig. 4.

The observations of Currie and Newman [12] in
their experimental investigation into natural-convec-
tive flow through a vertical flat-plate channel suggest
that a uniform inlet velocity is a reasonable assump-
tion for a theoretical investigation. Furthermore, for
the fluid to be induced to flow into the duct, the pressure
at the inlet has to be lower than that of the surround-
ings at the same elevation. Consequently, the most
realistic of the three inlet conditions is condition (b),
which specifies both a uniform inlet velocity and a
pressure defect at inlet.

Vol. 18, No. 12—1
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Pressure defects along ducts with a small and a large
Rayleigh number are shown in Fig,. 8. In the case of
the duct with the small Rayleigh number, the pressure
defect curve is approximately parabolic and con-
sequently the pressure gradient is almost linear, and
zero at mid-elevation. This behaviour of the pressure
defect was anticipated, it will be recalled, in deriving
equation (33) for small values of the Rayleigh number.
Inspection of Fig. 8 will show that the inlet conditions
exert a much greater influence on the pressure defect
at the large Rayleigh number.
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Ra=0-08
Pr=07

Ro=3x10°
Pr=07 _

| L |
4] o2 0-4 08 08 [

X
{

F1G. 8. Dimensionless pressure defects along uniform
heat flux ducts for a small and a large Rayleigh number
for the following inlet conditions: () U; is uniform and
Py; = 0; (b) U, is uniform and Py = —(U3/2); (©) U, is
parabolic and

T 1
Pd,'= —aj; UiaRdR

For the small Rayleigh number the curve for inlet con-
dition (b) (not shown) lies between curves {a) and (c).

InFig. 9 the dimensionless volume @, and the dimen-
sionless overall rate of heat transfer H,, are plotted
against Rayleigh number for Pr = 0-7. Unlike the cor-
responding parameters for the uniform surface tem-
perature duct {4,6,7,9] Q and H, do not asymptotically
approach a common value at small Rayleigh numbers.
In fact, @ for small Ra will be seen to approach the
relationship obtainable from equations (27) and (32),

namely .

e= J(8Ra)
and H, for all Ra to be inversely proportional to Ra
in accordance with equation (15).

The behaviour of Q and H, with Ra shown in Fig, 9
agrees with data presented by Davis and Perona [7].
However, their plot of Q, by not extending beyond
Ra = 10°, is misleading in that it suggests that Q varies
inversely with ./(Ra) for all values of Ra instead of, as
Fig. 9 shows, for only small values of Ra.

(42)
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F1G. 9. Dimensionless flow Q, and overall heat transfer
H,, for uniform surface heat flux ducts plotted against
Rayleigh number for the following inlet conditions:
(a) U; is uniform and Py, = 0; (b) U; is uniform and
Py = —(U?/2); (¢) U, is parabolic and

nJ” 5
By=—— | UPRdR.
ol

Curve of dimensionless flow @, by Davis and Perona
[7] extends from Ra =1-5 to 700 and coincides with
curve (a).

The dimensionless mean wall temperature 0,,,,; and
temperature of the wall at the top of the duct 6,,, are
shown in Fig. 10 plotted against the Rayleigh number.
At small Rayleigh numbers the dimensionless mean
wall temperature is about one-half of the dimensionless

109 T T T ™ T T

| L

Pr=0-7

b ¢
[ ! Pl 4
102 104
Ra

F1G. 10. Dimensionless temperature on the wall at the top
of the duct 6,,, and dimensionless mean wall temperature
0wm, for uniform heat flux ducts plotted against Rayleigh
number for the following inlet conditions: (a) U; is uniform
and P;; = 0; (b) U; is uniform and Py = —(U?/2); (c) U is
parabolic and

o1 | 'l I

T 1
Pu= —— | UPRdR.
QJo

In the case of 6, the curve for inlet condition (b) (not shown)
- lies between curves (a)-and (c).
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temperature at the top of the duct; this fact, it will be
recalled, is consistent with the predictions made in
establishing equation (33). However, as the Rayleigh
number is increased it will be seen that the ratio of
Oum to 8, becomes larger than a half. This relationship
between 6, and 6, with Ra can be readily explained
by examining the shape of the curves of 6,,, /0., in Fig. 5.

EXPERIMENTAL STUDY

Since the theory was based on an ideal fluid whose
properties, except for density in producing the buoy-
ancy forces, were independent of temperature, it was
considered desirable to conduct experiments in order
to test the validity of at least part of the theoretical
analysis. Consequently, with air as the working fluid
experiments were carried out for Rayleigh numbers
between 1 and 3000. This interval was considered
interesting because it fell between the two extreme flow
regimes for which additional theoretical information
was available for corroboration, namely equations (33)
and (40).

In order to span this range of Rayleigh numbers
satisfactorily three ducts of different sizes were used.
The ducts were 19-1, 254 and 46:7mm in internal
diameter and were all 1:22mm long. Each duct was a
thin-wall stainless steel tube and was heated by five,
independently adjustable, electrical resistance elements.
The elements were made of nichrome wire, helically
wound around the external surface of the tube and
positioned end-for-end along it. The external heat loss
was minimised by insulating the exterior of the tube
with fibre-glass, which was wrapped around it to a
radial thickness of 150mm. Fourteen thermocouples
were embedded in the wall of the tube to monitor
temperatures along the internal surface.

The difficulty of measuring small heat fluxes was
overcome by the expedient of accepting the theoreti-
cally established distributions of wall temperature
(shown in Fig. 5). With this compromise it was possible
to obtain uniform flux heating by simply controlling
the wall temperatures. Thus temperatures along the
wall were matched, by adjusting the current in each
of the five heating elements, with the theoretical tem-
perature profile. Despite the thickness of insulation sur-
rounding the tube, the external heat loss was com-
parable with the heat dissipated by the internal surface
and therefore had to be taken into account. The heat
loss was established by a similar heating of the duct
with its ends closed and the difference between the
two heat inputs gave a reasonable approximation to
the heat dissipated by the internal surface itself. This
method of determining the external heat loss is justified
by the fact that owing to the air in the blocked duct
increasing in an upward direction a stable situation
was created with negligible air movements.

Even with five independently adjustable heating
elements, it was not possible to obtain exactly the
desired temperatures at the extremities of the duct.
However, these deficiencies were of minor consequence
since the mean wall temperature was used as the
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reference temperature for calculating the Nusselt
number.

The properties of air used in the Nusselt and Rayleigh
numbers were established in the following manner; the
coefficient of thermal buoyancy was evaluated at am-
bient temperature and all other properties at the mean
wall temperature.

A I B B B R B
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191 | 1-22 =
- o 1254 ) 1-22 1
| o |46-7 | |22 .
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0ol p bl | | 1
1 102 107
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FiG. 11. Experimentally determined Nusselt numbers vs
Rayleigh numbers. The convected fluid was air. The theor-
etical curve for Pr = 0-7 from Fig. 2 is shown for comparison.

The experimentally determined Nusselt numbers are
presented in Fig. 11; they will be seen to agree satis-
factorily with the theory. It is interesting to note that
although the experiments were conducted in a closed
room within a large draught shield, the flow approach-
ing the inlet, made visible by smoke, was neither steady
nor axisymmetrical owing to the disturbing influence
of very small air movements in the room. The fact that
with these inlet conditions the experiments yielded
overall Nusselt numbers that agreed with the theory
corroborates the theoretical finding that the inlet con-
ditions, within reason, are not important parameters in
the range of Rayleigh numbers investigated exper-
imentally.

CONCLUSIONS

In this analysis of the problem of natural-convective
flow in a uniform heat flux duct the step-by-step
numerical method has proved to be useful and flexible.
Of considerable importance was the fact that the tech-
nique readily lent itself to investigating different
boundary conditions.

In order to facilitate the practical use of the data
that have been established, the Nusselt number was
based on the mean wall temperature. Furthermore,
Nusselt-Rayleigh number relationships have been
presented in such a way that either the mean wall tem-
perature can be ascertained from a known uniform
heat flux or vice versa.
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From the theoretical investigation the following con-
clusions can be drawn:

1. For Rayleigh numbers less than one the flow re-
sembles fully developed flow and the Nusselt number
varies with the square root of the Rayleigh number
based on the uniform heat flux. For Rayleigh numbers
greater than 1000 boundary-layer flow is produced and
the Nusselt number varies with the fifth root of the
Rayleigh number based on the uniform heat flux.

2. The Nusselt number for Prandtl numbers greater
than or equal to 0-7 is a function of the Rayleigh number
alone; however, for Prandtl numbers less than 0-7 the
Prandtl number also enters the relationship.

3. The relationship between the overall Nusselt
number and the Rayleigh number is relatively insen-
sitive to small changes in the inlet conditions.

Although the theory was developed for an ideal fluid,
the experiments with air yielded data that agreed satis-
factorily with the theoretical relationship between
Nusselt and Rayleigh numbers. This indicates that the
theory would be applicable to other fluids whose
properties do not vary too markedly with temperature.

It would be interesting to extend the experimental
work into the higher Rayleigh number range where the
effects of different inlet conditions become more pro-
nounced. However, for the results to be of any real
value the flow pattern at inlet would have to be estab-
lished and the theoretical results re-computed accord-
ingly for comparison.
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APPENDIX A
Finite Difference Equations

Since the flow in the duct was assumed to be axisym-
metrical, the relaxation was performed on a two-dimensional
rectangular grid containing the axis and a radial line.

In the finite difference forms of equations (7), (8) and (10
that follow, it will be seen that special equations were
required for points on the axis of the duct. For these
equations, terms involving (1/R}(6/8R}), which in finite differ-
ence form cannot be directly evaluated at R = 0, were re-
duced to the form #2/8R? by L’Hospital’s rule.

Continuity equation:

WhenO0 <R <1:
2 [V}.k%-le%-l'—' j‘kRk}
R+ Ry AR
Uiisr +Up) = WUjog kw1 + Ujer i)
o ] 2A)’( ImLE 0. (A}
When R =0and 1:
Vie=0 (A2)

Momentum equation:
When0 < R < 1:

U= Ujon, 1 T[Usker—Upe
] g o]

= [Ux,kn—i(;;,zﬁ'Uj,k—l]_(Pdf;§!'1}+8j‘k. (A3)

When R = 0:

U= Uy, Ujrr = Uju-1
N T T e

o " — Py
=2[U"" 22’;; Uga ‘} {P" NG ‘}sz,&. (A%)

Energy equation:
WhenO < R < 1:

01— 0i-1x 1 Brer — j.k—l]
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When R =0:
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APPENDIX B
Solution by Relaxation

The finite difference equations, equations (A1)—(A6), were
solved by a step-by-step relaxation procedure, which was
initiated at the bottom of the duct for particular values of
the dimensionless flow Q, and the Prandtl number, and
for a specified inlet condition.

As the local wall temperature was unknown, it had to be
determined together with the fluid temperature at the grid
points on each relaxation row. An expression will now be
derived that was used to obtain the surface temperature on
a row. The heat transferred from inlet to elevation X is
given by

H, = 2zXF. (B1)
Using equation (16) to replace F (dimensionless heat flux)
in equation (B1) gives

Ho— 2nX B
= (82)
and combining equations (B2} and (12) yields

X 1

- =1 U.8,RdR. B3

Pr L (B3)

Equation (B3) thus links the surface temperature with the
fluid temperature. The relaxation procedure that was
adopted is as follows:

1. Values were assigned to Q and Pr.

2. On the bottom row of the relaxation grid, Row 1, the
pressure defect Py, and the velocities U, 4, were set equal
to the specified inlet conditions, the temperatures of the
surface and the fluid were set equal to zero, and the radial
velocities V; ,, were set equal to zero.

3. On the second row:

U, , was initially set equal to U, and
8., was initially set equal to 8, 4.

4, The momentum equation, equations (A2) and (A3), was
relaxed for all fluid peoints on Row 2. Since U, , and F,, were
both unknown at each point, the equation was relaxed for

the variable
PJZ—Pdl f[:Ulk C }
(S RLLINGLLY ) ot S
2"‘*[ AX }/ AX AR

where C =2 for 0 < R<1 and C =4 for R=0. As each
point on Row 2 has the same value of Fy, (from equation (9))
the two variables were separated by using equation (11) in
finite difference form.

5. The continuity equation, equations (A1} and (A2), was
solved for grid points on Row 2 to give ¥, ;. It is worth
mentioning that although the continuity equation is of the
first order no difficulties were encountered in obtaining
sensible values of V;;, owing to the assumed axisymmetrical
nature of the flow.

6. The energy equation, equations (A5) and (A6), were
solved for all points in the fluid on Row 2 and then equation
(B3) was solved to obtain a new estimate of the surface
temperature. This procedure was repeated until all tempera-
tures on Row 2 were satisfactorily relaxed.

7. Values of the variables on Row 3 and subsequent rows
until P, ceased to be negative were found in a similar way.
Linear interpolation yielded the elevation at which F,
returned to zero; this elevation corresponded to the top of
the duct.

8. The reciprocal of the dimensionless length of the duct
yielded the Grashof number, and the Nusselt number was
obtained from equation (19).
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LE DEVELOPPEMENT DE LA CONVECTION NATURELLE LAMINAIRE DANS
UNE CONDUITE VERTICALE AVEC FLUX DE CHALEUR CONSTANT

Résumé-—On présente une étude théorique et expérimentale de 'écoulement laminaire en convection
naturelle dans des conduites verticales chauffées. Les conduites ont une section droite circulaire; leurs
extrémités sont ouvertes et leur surface interne dissipe uniformément la chaleur.

Les champs de vitesse et de température ainsi que la relation entre les nombres de Nusselt et de
Rayleigh sont obtenus par la résolution des équations fondamentales a 'aide d’une technique numérique
de pas 4 pas. Deux nombres de Rayleigh sont introduits, un est exprimé en fonction du flux thermique
constant et 'autre en fonction de la température moyenne de paroi. L'influence du nombre de Prandtl
sur la relation qui lie les nombres de Nusselt et de Rayleigh est discutée. Trois conditions a I'entrée
sont examinées; elles ont toutes fourni la méme expression du nombre de Nusselt pour les faibles nombres
de Rayleigh, et les différences entre les expressions du nombre de Nusselt obtenues aux nombres de
Rayleigh élevés ont &té trouvées faibles.

Les nombres de Nusselt d’origine expérimentale, l'air étant utilisé comme fluide convectif, sont en

accord satisfaisant avec les relations théoriques.

DIE AUSBILDUNG DER LAMINAREN, NATURLICHEN KONVEK:TIONSSTRGMUNG
IN EINEM SENKRECHTEN ROHR MIT KONSTANTEM WARMESTROM

Zusammenfassung—Es wird iiber eine theoretische und experimentelle Studie der laminaren, freien
Konvektionsstromung in senkrechten, beheizten Rohren berichtet. Die runden Rohre sind an beiden
Enden offen und ibertragen auf ihrer Innenseite einen konstanten Warmestrom.

Die Temperatur- und Geschwindigkeitsfelder und die Bezichung zwischen den Nusselt- und Rayleigh—~
Zahlen wurden durch die Losung der maBgebenden Gleichungen mit Hilfe eines numerischen
Differenzenverfahrens ermittelt. Es werden zwei Rayleigh-Zahlen definiert: die eine auf der Basis des
konstanten Wirmestroms und die andere mit der mittleren Wandtemperatur. Der EinfluB der Prandtl-Zahl
auf die Nusselt- bzw. Rayleigh-Zah! wird erldutert. Drei verschiedene Einstrdmbedingungen wurden
untersucht; Bei kleinen Rayleigh-Zahlen ergab sich dieselbe Nusselt-Beziehung, withrend bei groflen
Rayleigh-Zahlen nur kleine Differenzen in der Nusselt-Beziehung auftraten. Experimentell ermittelte

Nusselt-Zahlen fiir Luft stimmen mit der theoretischen Beziehung zufriedenstellend iiberein.

PA3IBUTUE JTAMUWHAPHOIO CBOBOJHO-KOHBEKTUBHOI'O TEYEHMA B
BEPTMKANIBHOM KAHAIJIE C IMMOCTOAHHBIM INOTOKOM TEIUIA

AnnoTranun — [1peacTaBieHbl Pe3yibTaThl TEOPETHUECKOTO H IKCIEPUMEHTABHOTO HCCNIENOBAHHS
JNIgMUHAPHOIO CBOOOIHO-KOHBEKTMBHOIO TEYCHHS B HArPEBACMBIX BEPTHKANLHBIX kKananax. KaHanst
KPYIJIOro CEYeHHN, OTKPbiIThiE ¢ OOOHX KOHIOB ¥ ¢ NOCTOSHHLIM IMOTOKOM TEINla HA MX BHYTPEHHHX
TIOBEPXHOCTHX,

W3 petrenws OCHOBHBIX YpapHEHHM METOAOM TOCAEHOBATENBHLIX NpUOIMXKeRUH YHCHCHHO NOMNY-
YEHbI IOJTA TEMNEPATYP W CKOPOCTH M 32BHCHMOCTH Mexay uucnamu Hyccenbta ¥ Pentes. BeogsTtcs
nga ydcna Penesi: 00HO BHIPAXCHO Yepe3 NOCTOSHHBIH TEINIOBOA NOTOK B APYToe — 4€pe3 CPeaHI0I0
TeMneparypy creuku. OOcyxpaercs BnuAHUe vucna [IpaHATNA HA OTHOLUEHMWE IUEXKAY YHCIAMH
Hyccenwsra 1 Pentes. ccnenopaiuck TpH yCIIOBHS HA BXOJE ; BCE OHM JAJH OOHY M TY K€ 3aBHCHMOCTD
Hyccenera nins Manbix yucen Penes ¥ TONBKO Manbie pa3HOCTH MexAy 3aBMcHMocTssmi Hyccensta
Ans OonbluMx yucen Penes.

OxcnepuMenTanpHO HaliieHHkie 3HaveHHus yucen HyccenbTa 218 BO3AYXa B Ka4Y€CTBE KOHBEKTH-

pytouiel Cpelibl XOPOILNO COTNIACYIOTCS C TEOPETHYCCKHMH PE3YIbTATAMH.
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